Dual inhibition of BRD4 and PI3K-AKT by SF2523 suppresses human renal cell carcinoma cell growth
نویسندگان
چکیده
Bromodomain-containing protein 4 (BRD4) and PI3K-AKT are both important for renal cell carcinoma (RCC) development and progression. SF2523 is a BRD4 and PI3K-AKT dual inhibitor. The present study demonstrated that SF2523 was cytotoxic and anti-proliferative to established RCC cell lines (786-O and A498) and primary human RCC cells. SF2523 induced activation of caspase and apoptosis in RCC cells. Further, SF2523 disrupted RCC cell cycle progression and inhibited cell migration in vitro. At the signaling level, SF2523 in-activated PI3K-AKT-mTOR, and downregulated BRD4-dependent proteins, Bcl-2 and Myc, in RCC cells. Remarkably, SF2523 was more efficient than Wortmannin (the PI3K inhibitor) and JQ1 (the BRD4 specific inhibitor) in killing RCC cells. In vivo, SF2523 administration at well-tolerated doses suppressed 786-O xenograft tumor growth in severe combined immunodeficient (SCID) mice. Together, our results suggest that concurrent blockage of BRD4 and PI3K-AKT signalings by SF2523 efficiently inhibits RCC cell growth in vitro and in vivo.
منابع مشابه
PI3K/Akt/mTOR and CDK4 combined inhibition enhanced apoptosis of thyroid cancer cell lines
Introduction Thyroid cancer is a malignant disease with poor prognosis. The PI3K/Akt/mTOR and Cyclin-Dependent Kinase 4 (CDK4) pathways are vital regulators of tumor cell proliferation and survival. Therefore the present study was designed to use dual inhibition of such pathways to kill thyroid cancer cells. Methods and materials The effects of each inhibitors on human ATC and...
متن کاملPI3K/Akt/mTOR and CDK4 combined inhibition enhanced apoptosis of thyroid cancer cell lines
Introduction Thyroid cancer is a malignant disease with poor prognosis. The PI3K/Akt/mTOR and Cyclin-Dependent Kinase 4 (CDK4) pathways are vital regulators of tumor cell proliferation and survival. Therefore the present study was designed to use dual inhibition of such pathways to kill thyroid cancer cells. Methods and materials The effects of each inhibitors on human ATC and...
متن کاملJQ1 suppresses tumor growth via PTEN/PI3K/AKT pathway in endometrial cancer
Overexpression of c-Myc is associated with worse outcomes in endometrial cancer, indicating that c-Myc may be a promising target for endometrial cancer therapy. A novel small molecule, JQ1, has been shown to block BRD4 resulting in inhibition of c-Myc expression and tumor growth. Thus, we investigated whether JQ1 can inhibit endometrial cancer growth in cell culture and xenograft models. In PTE...
متن کاملmicroRNA-29a functions as a tumor suppressor in nasopharyngeal carcinoma 5-8F cells through targeting VEGF
Objective(s): microRNA-29 (miR-29) family miRNAs have been mentioned as tumor suppressive genes in several human cancers. The purpose of this study was to investigate the function of miR-29a in nasopharyngeal carcinoma (NPC) cells. Materials and Methods: Human NPC cell line 5-8F was transfected with mimic, inhibitor or scrambled controls...
متن کاملSingle Agent and Synergistic Activity of the "First-in-Class" Dual PI3K/BRD4 Inhibitor SF1126 with Sorafenib in Hepatocellular Carcinoma.
Deregulated PI3K/AKT/mTOR, Ras/Raf/MAPK, and c-Myc signaling pathways are of prognostic significance in hepatocellular carcinoma (HCC). Sorafenib, the only drug clinically approved for patients with advanced HCC, blocks the Ras/Raf/MAPK pathway but it does not inhibit the PI3K/AKT/mTOR pathway or c-Myc activation. Hence, there is an unmet medical need to identify potent PI3K/BRD4 inhibitors, wh...
متن کامل